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ABSTRACT

EXPERIMENTAL STUDY ON VISCOELASTIC
FLUID-STRUCTURE INTERACTIONS

MAY 2017

ANITA ANUP DEY

B.E., SARDAR PATEL COLLEGE OF ENGINEERING

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jonathan P. Rothstein

It is well known that when a flexible or flexibly-mounted structure is placed per-

pendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of

separated vortices at high Reynolds numbers. If the same flexible object is placed in

non-Newtonian flows, however, the structure’s response is still unknown. The main

objective of this thesis is to introduce a new field of viscoelastic fluid-structure inter-

actions by showing that the elastic instabilities that occur in the flow of viscoelastic

fluids can drive the motion of a flexible structure placed in its path. Unlike Newtonian

fluids, the flow of viscoelastic fluids can become unstable at infinitesimal Reynolds

numbers due to the onset of a purely elastic flow instability. This instability occurs in

the absence of nonlinear effects of fluid inertia and the Reynolds number of the flows

studied here are in the order of 10−4. When such an elastic flow instability occurs in

the vicinity of a flexible structure, the fluctuating fluid forces exerted on the struc-

ture grow large enough to cause a structural instability which in turn feeds back into
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the fluid resulting in a flow instability. Nonlinear periodic oscillations of the flexible

structure are observed which have been found to be coupled to the time-dependent

growth and decay of viscoelastic stresses in the wake of the structure. Presented in

this thesis are the results of an investigation of the interaction occurring in the flow of

a viscoelastic wormlike micelle solution past a flexible rectangular sheet. The struc-

tural geometries studied include: flexible sheet inclinations at 20◦, 45◦ and 90◦ and

flexible sheet widths of 5mm and 2.5mm. By varying the flow velocity, the response

of the flexible sheet has been characterized in terms of amplitude and frequency of

oscillations. Steady and dynamic shear rheology and filament stretching extensional

rheology measurements are conducted in order to characterize the viscoelastic worm-

like micelle solution. Bright field images show the deformation of the flexible sheet

during an unstable oscillation while flow-induced birefringence images highlight the

viscoleastic fluid stresses produced in the wake of the flexible sheet.

iv
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CHAPTER 1

INTRODUCTION

1.1 Non-Newtonian fluids

Non-Newtonian fluids are a significant component in daily life showing many in-

teresting characteristics, the most important being that they may behave like an

elastic Hookean solid or a viscous Newtonian fluid or a complex combination of the

two, depending on the timescale in which they are investigated. These fluids are of-

ten called viscoelastic fluids. The combination of viscosity and elasticity is imparted

by the physical nature of the macromolecules in these fluids, which may be present

in the form of high molecular weight polymers, self-assembled wormlike micelles or

suspensions of micron or nanoscale particles. As a flexible polymer coil or wormlike

micelle stretches within a flow field, it is deformed out of its equilibrium random

configuration. An elastic restoring force results, driving the polymer or micelle back

toward its entropically favorable equilibrium state [1]. This leads to a characteristic

fluid timescale known as the relaxation time,

λ =
η

G
, (1.1)

which describes the time required for the polymer coil or wormlike micelle to relax

from a deformed state back to its equilibrium configuration. Here η is the viscosity

and G is the elastic modulus of the fluid. For these fluids, Newton’s law of viscosity

no longer holds. They are therefore described as non-Newtonian fluids. Thus, the res-

idence time of a fluid in a flow must also be considered to understand the viscoelastic

1
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fluid’s response. The relative importance of elasticity in a flow is described by a Deb-

orah number which is the ratio of the relaxation time of the fluid to a characteristic

deformation timescale,

De =
λ

tflow
. (1.2)

If the deformation timescale is large in comparison to the relaxation time of the fluid,

De � 1, then the polymer coil has ample time to relax back to equilibrium and the

fluid will behave like a Newtonian fluid. If the relaxation time is much longer than

the deformation timescale in the flow, De� 1, then the fluid will react like an elastic

Hookean solid. The behavior of the fluid between these two extremes is quite rich.

Viscoelastic wormlike micelle solutions are currently being used extensively as rhe-

ological modifiers in consumer products such as paints, detergents, pharmaceuticals,

lubricants and emulsifiers where careful control of the fluid properties are required.

In addition, micelle solutions have also become important in a wide range of applica-

tions including agrochemical spraying, inkjet printing, turbulent drag reduction and

enhanced oil recovery where they are often used as a polymer-free fracture fluid for

stimulating oil production [2–4]. A fundamental understanding of the behavior of

these complex fluids in different flow regimes is therefore extremely important to a

host of industries. Techniques for the analysis and control of the flow of complex fluids

require accurate determination of material properties as well as the ability to under-

stand and predict changes that occur within the materials as they are subjected to

the flow conditions encountered in industrial and commercial applications. Shear and

extensional rheometers provide an excellent framework for investigating the behavior

of these complex fluids because the flow kinematics tends to be simple. Additionally,

these rheological measurements can shed light on the dynamics of wormlike micelle

solutions in complex flows and phenomena such as elastic flow instabilities, which com-

monly occur in many of the industrial and commercial applications mentioned above.

A number of studies of the nonlinear rheology and the behavior of these complex fluids

2
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Figure 1.1. Various morphologies of wormlike micelles which impart viscoelasticity

in strong flows have recently been published. Surfactants are amphiphilic molecules

which have both a bulky hydrophilic head, which is often charged, and a relatively

short and slender hydrophobic tail typically consisting of an 8-20 carbon atom chain.

Above their critical micelle concentration (CMC), surfactant molecules in water will

spontaneously self-assemble into large aggregates known as micelles to minimize the

exposure of their tails to water [5–7]. In oil, reverse micelles are formed where instead

the head-groups are shielded from the oil [8,9]. As seen in Figure 1.1, these large ag-

gregates can form into a number of different complex shapes including spherical and

wormlike micelles, vesicles and lipid bilayers [10]. The morphology of the aggregates

depends on the size of the surfactant head group, the length and number of tails,

the charge on the surfactant, the salinity of the solution, temperature, and the flow

conditions [5,10]. We are most interested in wormlike micelle because, as suggested

by their pseudonym ‘living polymers’, wormlike micelles display many of the same

viscoelastic properties of polymers. However, although both wormlike micelle solu-

tions and polymer solutions can be viscoelastic, wormlike micelles are physically quite

different from polymers. Whereas the backbone of a polymer is covalently bonded

and rigid, wormlike micelles are held together by relatively-weak physical attractions

and as a result are continuously breaking and reforming with time. In an entan-

gled network, both individual polymer chains and wormlike micelles can relieve stress

through reptation driven by Brownian motion [6]. However, unlike polymeric fluids,

wormlike micelle solutions have access to a number of stress relief mechanisms in ad-

3
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dition to reptation. Wormlike micelles can relieve stress and eliminate entanglement

points by either breaking and reforming in a lower stress state [7] or alternatively by

creating a temporary branch point which allows two entangled micelles to pull right

through each other thereby eliminating the entanglement point and relieving stress

in what has become known as a ‘ghost-like’ crossing [11]. Additionally, the constant

re-organization of the network structure results in several interesting phenomenon

when subjected to strong flows. Under all but the most extreme conditions, these

solutions’ large viscosities lead to a vanishingly small Reynolds number,

Re =
ρV L

µ
(1.3)

where ρ is the fluid density, U is the flow velocity, L is the characteristic length scale

and µ is the fluid viscosity. In all of the experiments presented in this work, the

Reynolds number is of order 10−4. An interesting feature of wormlike micelles is their

mechanism of mechanical failure under an applied stress. Flow curves have shown

these solutions to be shear thinning [7], and strain hardening [12], however these

two non-Newtonian behaviors do not predict their method of failure. In extensional

flow, when a fluid filament experiences a large enough stress, the value of which is

independent of strain rate it fails dramatically at its mid plane. This behavior has

been observed most recently by Rothstein et al. [13], and is believed to be caused by a

scission of individual micelle chains. This type of dramatic failure can manifest itself

as instabilities in not just extensional flows, but complex flows as well. For example,

the flow around a sphere contains regions of shear as the fluid passes around the

circumference, as well as extension in the wake of the sphere. Given that the fluid

is known to be shear thinning as well as extensionally thickening, the combination of

these qualities and the complex flow field yields some interesting results. Chen and

Rothstein [14] observed that above a critical Deborah number a new class of elastic

instabilities, related to the rupture of these micellar solutions in the extensional flow

4
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present in the wake of a sphere occurred. By measuring the flow fields with PIV and

FIB they were able to explore the kinematics of the flow. Similar instabilities have

also been observed by Belmonte et al. [15].

1.2 Newtonian fluid-structure interactions

When a flexible or flexibly mounted structure is placed in the path of fluid flow,

the fluid exerts a force on the structure which causes the structure to deform. This

deformation of the structure in turn modifies the fluid forces exerted by the fluid flow.

This leads to a coupling between structural motion and the fluctuating fluid forces.

This constitutes a fluid-structure interaction (FSI). The field of FSI has many appli-

cations in harnessing wind energy, novel energy extraction methods and biomedical

engineering. The fundamental studies on FSI for Newtonian fluid have been collected

in the form of several books and review papers (e.g., [16–22]). Of all these studies,

here we will focus on a model FSI problem: Vortex-Induced Vibration (VIV).

VIV of a flexibly-mounted rigid cylinder with a circular cross-section placed in

fluid flow and free to oscillate in the cross-flow direction, i.e., the direction perpen-

dicular to the oncoming flow, has become the canonical problem in FSI. Work by

several investigators has helped elucidate the fundamentals of VIV [16,21–27]. Large-

amplitude oscillations occur when the frequency of vortex formation is relatively close

to the natural frequency of the structure. Then the frequency of vortex shedding can

be entrained and become equal to the frequency of the structural crossflow vibrations,

this wake-body resonance condition is referred to as lock-in. Substantial differences

exist when the rigid cylinder is also allowed to move in the inline direction, the di-

rection parallel to the oncoming flow [28,29]. Inclusion of the inline motion leads to

significant changes in hydrodynamic forces acting on the rigid cylinder, depending on

the phase difference between the inline and the crossflow vibrations [30,31].

5
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The case of a long flexible cylinder in a cross-flow has been considered only re-

cently due to its complexities. These complexities are associated with the distributed

interaction between the fluid and the flexible body, including the difficulty to pin-

point the region where the fluid excites the body, and identifying the mechanisms

of energy redistribution along the span. Detailed laboratory experiments on flexible

structures placed in flow have provided information on the amplitude of vibration,

excited frequencies and structural wave numbers [32]. For long flexible cylinders,

contrary to the case of rigid cylinders, the phase difference between the inline and

crossflow displacements can vary along the span, leading to diverse trajectories along

the structure [33–35]. A dominant mechanism has been identified in the interaction

between a flexible circular cylinder undergoing free vibrations in sheared crossflow

and the vortices forming in its wake: energy is transferred from the fluid to the body

under a resonance condition, which occurs within a well-defined region of the span,

dominated by counterclockwise, figure-eight orbits [30].

In all the cases of FSI described above, the fluid was Newtonian and the flow was

at moderate to high Reynolds numbers, Re > 50. In these inertial-dominated flows,

the motion of the cylinder was driven by the shedding of vortices which separate from

the cylinder and shed from its wake. There are, however, a whole class of flows in

which the Reynolds number is vanishingly small, inertia plays essentially no role and

yet the flow can become unstable. In these cases, the presence of high molecular

weight polymers or wormlike micelles can make the fluids elastic. The combination of

fluid elasticity and mean curvature of the streamlines has been shown to destabilize

the flow and lead to the onset of elastically-driven flow instabilities [36]. In this study,

we present results that show that these instabilities can drive the motion of a flexible

structure placed in its flow path.

6
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1.3 Objective

The goal of this thesis is to study fluid-structure interaction (FSI) phenomena in

which the fluid is a non-Newtonian viscoelastic fluid and the structure is flexible. FSI

has been studied extensively for structures in contact with Newtonian fluid where the

shedding of separated vortices at high Reynolds numbers can drive the motion of a

flexibly-mounted or flexible structure. There are, however, no studies in the literature

of FSI for viscoelastic fluids. Unlike Newtonian fluids, the flow of viscoelastic fluids

can become unstable even at very small Reynolds numbers in the order of 10−4 seen

in literature for flow past stationary objects. This flow instability can provide a

periodic driving force on flexible structures, resulting in a new class of FSI problems.

This phenomenon has not yet been studied. FSI of viscoelastic fluids is an open

problem with the potential to have a transformative impact on the field of fluid-

structure interactions. In our study, we have observed structural instabilities caused

by instabilities of a non-Newtonian viscoelastic fluid.

Viscoelastic fluids such as polymer melts and solutions, micelles solutions and

suspensions are encountered in a variety of industries and applications critical to

modern day economics. A fundamental understanding of how these viscoelastic fluids

interact with structures can have significant influence on a number of very different

applications ranging from polymer processing to health care. An example is the use

of carbon fiber reinforced polymer composites. With the push to higher fuel economy

standards, reducing the weight of cars and airplanes while maintaining their structural

integrity is highly desirable. Carbon fiber reinforced composite parts are formed by

driving a polymer resin through a woven carbon fiber mat. At the high flow rates

desired to make this process economically competitive, the viscoelastic polymeric

fluid can experience an elastic flow instability. This flow instability can drive the

motion of the carbon fiber matrix, which could cause undesired effects such as fiber

packing, inhomogenous fiber distribution, and even failure of the fibers. Here the FSI
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between a flowing viscoelastic fluid and one or more elastic solid fibers is critically

important to the success of an injection molded part. The proposed research can also

have an impact on a number of biological systems. Due to the presence of proteins

and polypeptides, many biological fluids are viscoelastic. As an example, when the

viscoelasticity of middle ear effusions becomes too large, it can impair the ability

of beating cilia that line the walls of the inner ear to remove the fluid [37], leading

to ear infections. Understanding the FSI between beating cilia and the mucous-like

excretions could eventually lead to better strategies for preventing ear infections.

A large body of work exists on low Reynolds number swimmers. In the case of

swimming, a two-way coupling between flow and structure is not needed: the structure

pushes the fluid around it in order to propel itself. A number of recent numerical

and experimental studies have investigated the importance of viscoelasticity on the

propulsion of different model micro-organisms [38–41]. In all of these studies, the

structure is externally activated to move and the fluid’s motion is a result of the

structure’s motion. What we propose to study is concerned with the cases where

the viscoelastic fluid undergoes instability, when the structure is not moving. This

flow instability then forces the structure to move, which in turn will modify the fluid

motion. This two-way coupling between the viscoelastic fluid instability and the

structural instability (response) is the focus of this thesis.

8
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CHAPTER 2

EXPERIMENTAL SETUP

2.1 Flow geometry

In order to observe viscoelastic FSI, a deformable structure was mounted within

a rectangular flow cell and exposed to a crossflow of a viscoelastic wormlike micelle

solution. A flexible natural rubber sheet having a length of 50 mm, width 5 mm and

thickness 0.3 mm served as the deformable structure. The flexible sheet was clamped

at both ends to the walls at the midplane of the rectangular channel and aligned

perpendicular to the flow direction. The flexible sheet had an elastic modulus of E

= 101 kPa and its natural frequency was measured to be fN = 0.15 Hz from pluck

tests of the mounted sheet in air. This measurement closely matches the predictions

for a beam with clamped ends. The flow cell was made of acrylic so it would be

transparent and had an internal cross section of 50 mm × 50 mm and a length of 450

mm. In order to avoid containment effects, the flexible sheet was placed such that a

sheet to channel width of at least 5:1 can be maintained. In this way, the greatest

shear gradient experienced by the test fluid will be along the flexible sheet and not

the bounding channel walls. The viscoelastic wormlike micelle solution used here

was composed of 50 mM of a cationic surfactant cetyltrimethyl ammonium bromide

(CTAB) and 25 mM of sodium salicylate (NaSal) in deionized distilled water. A study

of the shear and transient extensional rheology of this solution has been discussed in

the fluid rheology section.

To minimize the driving pressure fluctuations, a positive displacement piston

pump was fabricated and used to produce a precisely controllable, constant flow
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Figure 2.1. Schematic diagram of the geometry used to study the flow of wormlike
micelle solution past a flexible sheet

rate through the channel. The piston motion was controlled with addressable micro-

staging, capable of a flow rate resolution of 4 mm3/s. Due to the precision of the

pumping system, the flow velocity can be accurately controlled, allowing for a repeat-

able and accurate interrogation of the test fluid using any number of measurement

techniques. In this study, the flow velocity was varied from 0 to 14 mm/s to explore

the flexible sheet deformation, fluid-structure interaction and flow induced birefrin-

gence as a function of the average flow velocity.

2.2 Structural deformation tracking

In order to quantitatively measure the deformation of the flexible sheet during the

flow of the test fluid, discrete points were marked along the length of the sheet as

shown in Fig. 2.2. During the test, the motion of the flexible sheet was captured using

a high speed camera (Phantom V4.2). Using a high speed camera allowed videos to

be recorded at 100 frames per second. The captured high resolution videos were

then used as an input in a tracking software (Tracker), which located and tracked

the motion of discrete points and provided the displacement time histories at each

point for each frame. For every test, velocity of the test fluid was step-increased
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Figure 2.2. Flexible sheet position at (a) rest and (b) under flow conditions.

from zero to a specific flow velocity, wherein the flexible sheet deformed from the

no-flow position to a deformation having a static displacement. In the experiments

conducted for this study, the flexible sheet showed only the first mode of excitation

in the unstable oscillations. Therefore, only the midsection point on the sheet was

inputed into the tracking software and this was sufficient to gain information regarding

the amplitude and frequency of oscillations. For each time history, a minimum of

180 seconds of data was collected once the flexible sheet achieved a steady mean

displacement. Additionally, in order to illustrate the complex deformation undergone

by the flexible sheet for each cycle of oscillation, bright field images were captured

using a Nikon D70 digital camera at small time increments within a single oscillation

cycle for various flow velocities. These sets of images were critical in determining the

total stress experienced by the flexible sheet based on the total deformation of the

sheet profile visible in the bright field images. This total stress was in fact applied

by the viscoelastic fluid flowing past the flexible sheet. Thus, the bright field images

helped in relating the deformation of the flexible sheet with the stresses developed in

the viscoelastic fluid.
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2.3 Flow-induced birefringence (FIB)

The refractive index of a wormlike micelle varies depending on whether the light

passes parallel or normal to the micelles backbone. By passing light of a known

polarization state and frequency through a fluid sample and measuring the resulting

change in polarization state, flow-induced birefringence takes advantage of this fact

to measure the deformation of the micelle. Under all flow conditions, this technique

can at least qualitatively elucidate the regions of large stress in a flow. In the limit of

small deformations, an optical train can be built up using Mueller calculus, and a value

of the micellar deformation can be calculated from a stress-optic coefficient. Flow-

induced birefringence measurements have been used quite extensively to examine both

steady and transient flows of and wormlike micelles [14,42–45].

A monochromatic light source was used to illuminate the flow between crossed

polarizers. A Nikon D70 digital camera was used to capture the birefringent pat-

terns in the wormlike micelle solution generated by the flow for each linear polarizer

configuration. Due to the extreme deformation the micellar network undergoes at

high Deborah numbers, data analysis becomes impractical because the birefringence

quickly goes through orders. As such, for the purpose of this study, the full field FIB

technique is used only qualitatively to highlight the deformation; it is a visualization

tool to aid the observer.

2.4 Fluid rheology

2.4.1 Sample preparation

The test fluid was composed of wormlike micelle solution assembled from 50 mM

of cationic surfactant cetyltrimethylammoniun bromide (CTAB) (MP Biomedicals)

and 25 mM of sodium salicylate (NaSal) (Fisher Scientific) in deionized water. This

solution is well above the critical micelle concentration, which for CTAB in pure wa-

ter is CMC = 0.9 mM and is again significantly lower in the presence of salt [5].
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The CTAB was dissolved in aqueous NaSal solution on a hot plate with a magnetic

stirring bar. During mixing, a moderately elevated temperature was applied to re-

duce viscosity and aid in uniform mixing. After the solutions were fully dissolved,

approximately 20-30 minutes, they were allowed to settle at room temperature for at

least 24 hours before any experiments were performed to allow air bubbles introduced

during mixing to rise out of solution. At the concentrations used, the wormlike mi-

celle solution is concentrated and entangled with significant number of entanglement

points per chain [5].

When analyzing and presenting the experimental data, the relaxation times and

viscosities were adjusted to their values at a reference temperature of Tref = 25◦C

using time-temperature superposition with a shift factor, aT , defined by the Arrhenius

equation [46].

aT = exp

[
− 4H̄

R

[
1

T
− 1

Tref

]]
(2.1)

Within the temperature range of our experiments, the Arrhenius form of the time-

temperature superposition shift factor was found to be in good agreement with the

rheological data for each of the wormlike micelle solutions tested, however, because

of the sensitivity of the underlying wormlike micelle structure to temperature, every

effort was made to maintain the fluid temperature to within plus or minus a few

tenths of a degree for all of the experiments presented herein. Alternatively, the shift

factor may be calculated from the Williams-Landel Ferry equation given by

logaT =
−c01(T − Tref )

c02 + (T − Tref )
(2.2)

In either case, the time-temperature superposition principle was found to be a valid

method of accounting for small differences in laboratory temperature.
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Figure 2.3. Steady and dynamic shear rheology data of the 50mM CTAB/25mM
NaSal wormlike micelle solution. (a) shows the viscosity as a function of shear rate.
In (b), the � symbols represent the storage modulus, G′, the � symbols represent the
loss modulus, G′′, and the solid lines represent the predictions of a two mode Maxwell
model as a function of frequency.
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2.4.2 Shear rheology

The steady and dynamic shear rheology of the test fluid was characterized using a

stress-controlled rheometer (TA instruments, AR2000) with a 6cm/2◦ cone-and-plate

geometry. The micelle solution was loaded and allowed to equilibrate for several

minutes. The samples were not pre-sheared. In Figure 2.3(b), the storage modulus,

G′, and loss modulus, G′′, of the CTAB-NaSal wormlike micelle solutions are plotted

as a function of angular frequency, ω.

The CTAB-NaSal solution has a Maxwell relaxation time of λ = 47s and a zero

shear viscosity of η0 = 200Pas. The deviation of the rheological data from the

predictions of the two mode Maxwell model observed at large angular frequencies in

Figure 2.3 correspond to the Rouse-like behavior of the micelle between entanglement

points [47] and can be used to determine both the breakup time, λbr, and the reptation

time, λrep, of the wormlike micelle chains. In the fast breaking limit λrep � λbr,

Cates showed that the breakup and reptation time could be related to the measured

value of the Maxwell relaxation time through λ =
√
λbrλrep [48]. Additionally, the

theoretical mesh size ζm = (kT/G0)
1/3 [49,50] can be determined in order to gain

some information about the proximity of entanglement points and the density of the

wormlike micelle mesh. The wormlike micelle solution used in this study has breakup

and reptation times of 2s and 52.6s respectively and theoretical mesh size of 8.6×10−9.

In Figure 2.3(a), the steady shear viscosity, η, is plotted as a function of shear rate,

γ̇. At small shear rates and angular frequencies, the micelle solutions have a constant

zero shear rate viscosity. As the shear rate is increased, the fluid begins to shear

thin. At a critical shear rate, the viscosity drops precipitously approaching a slope of

η ∝ γ−1.
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2.4.3 Extensional rheology

Wormlike micelle solutions have been the subject of many experiments in exten-

sional flow in recent years. Most recently, Rothstein et al. [51] have studied the effects

of pre-shear on the extensional viscosity of solutions of varying concentrations. A fil-

ament stretching extensional rheometer (FiSER) capable of imposing a homogeneous

uniaxial extension rate, ε̇, on a fluid filament placed between its two endplates was

used to make simultaneously measurements of the evolution in the force and the mid-

point radius, Rmid. In a detailed force balance of the filament stretching rheometer,

Szabo [52] showed that the principal elastic tensile stress difference generated within

the filament could be calculated from the total force measured by the load cell, Fz, if

the weight of the fluid, the surface tension and the inertia of the fluid are taken into

account

〈τzz − τrr〉 =
Fz

πR2
mid

+
1

2

ρg(πL0R
2
0)

πR2
mid

− σ

Rmid

+
1

2

ρ(πL0R
2
0)L̈z

πR2
mid

(2.3)

where σ is the surface tension of the fluid, ρ is the density of the fluid, and L̈z is the

acceleration of the endplate. For strain hardening fluids, the contributions of surface

tension and gravity to the force balance in eq.2.3 are only significant at small strains

or strain rates [53]. The last term of eq.2.3 is due to the fluid inertia and is negligibly

small for the present experiments. The principal elastic tensile stress can be further

broken down into contributions from the wormlike micelle and its Newtonian solvent,

〈τzz − τrr〉 = 4τe + 3ηsε̇ (2.4)

where ηs is the solvent viscosity of the fluid. The transient extensional viscosity of

polymeric fluids in homogenous uniaxial extension can thus be written as

η+ext =
〈τzz − τrr〉

ε̇
= 3ηs +

4τe
ε̇

(2.5)
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Figure 2.4. Representative plot of transient filament stretching rheometry exper-
iments for the 50mM CTAB/25mM NaSal wormlike micelle solution at Wi = 288.
The symbols represent the elastic contribution to the tensile stress difference as a
function of Hencky strain. The experiment ends abruptly upon the rupture of the
fluid filament.

and nondimensionalized with the zero shear rate viscosity to form the Trouton ratio.

Tr = 〈τzz − τrr〉/η0ε̇ = η+ext/η0 (2.6)

The deformation imposed upon the fluid filament can be described in terms of a

Hencky strain, ε = 2ln(Rmid/R0) where R0 is the initial midpoint radius of the fluid

filament. The strength of the extensional flow is characterized by the Weissenberg

number, Wi = λε̇, which is the product of the characteristic relaxation time of the

fluid, λ, and the extension rate, ε̇. The Weissenberg number is a measure of the

relative importance of elastic to viscous stresses in a flow. For a detailed description

of the extensional rheometer used in these experiments see Rothstein [12]. The exten-

sional rheology of the solution tested have been previously investigated and published

by Bhardwaj et al. [13,51] and Rothstein [12]. However, for completeness, filament

stretching stretching experiments were conducted for the test fluid used in this study.

A representative plot of the elastic tensile stress, 4τe, of the 50/25mM CTAB-NaSal
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Figure 2.5. The maximum extensional viscosity reached before filament rupture as
a function of strain rate for the 50mM CTAB/25mM NaSal wormlike micelle solution.

as a function of Hencky strain for a Weissenberg number of Wi = 288 is presented in

Fig. 2.4. The elastic tensile stress is found to increase monotonically with increasing

Hencky strain and demonstrate reasonably strong strain hardening achieving a final

elastic tensile stress, 4τe = 7.5kPa at ε ∼= 1.8. At large extension rates, Wi� 1, the

fluid filaments were all found to rupture. For all of the experiments that ended with

a filament rupture, the final maximum elastic stress that was achieved in the fluid

filaments of each solution was found to be constant independent of extension rate [13].

Owing to the constant elastic tensile stress, the extensional viscosity is found to de-

crease linearly with increasing imposed extension rate, ηE ∝ ε̇−1 as seen in Fig. 2.5. It

has been hypothesized that the tensile stress of rupture corresponds to the maximum

stress that the micelles can withstand before they begin to fail en masse [12].The

dynamics of the filament rupture have been captured with high-speed photography in

the past and the interested reader is referred to Chen and Rothstein [14] or Bhardwaj

et al. [13] for details.
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CHAPTER 3

RESULTS

3.1 Sheet displacement time histories

A series of measurements were made over a range of flow velocities where the

maximum Reynolds number of Re = 3.5 × 10−4 was attained. Reynolds number is

defined as, Re = ρUw/η0 where ρ is the density of the fluid, U is the flow velocity,

w is the width of the sheet, and η0 is the zero shear rate viscosity. The Re signifies

the strength of inertial effects in a flow. As Re is very small, these experiments are

in the Stokes flow regime and the inertial flow effects can be neglected. At zero flow

velocity, the sheet is undisturbed and aligned perpendicular to the flow direction as

seen in Fig. 3.1. As the cross flow is applied, the sheet is bent in the flow direction.

Here we observe that in addition to the induced curvature along the length of the

sheet that can be observed from the front view in Fig. 3.1, the low flexural rigidity

of the sheet results in a secondary curvature across the sheet that can be observed

from the side view in Fig. 3.1. The resulting cross-sectional profile is ‘C’ shaped. At

low flow velocities, where the Weissenberg number is small, the flow of the wormlike

micelle solution remains stable and, as seen in Fig. 3.1, the static deflection of the

sheet grows with increasing average flow speed. As the flow velocity is increased

beyond a critical velocity and a corresponding critical Weissenberg number, the flow

of the wormlike micelle solution becomes unstable and this in turn affects the stability

of the flexible sheet displacement. At this stage, the flexible sheet does not have a

constant displacement, but rather begins to oscillate about its stretched position. As

was the case for the flow of wormlike micelle solutions past circular cylinders and
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Figure 3.1. Bifurcation diagram of the center line deflection of the flexible sheet
versus the flow velocity.

spheres [14,54], the flow instability originates as a slow growth and fast decay of

extensional stress in the wake of the flexible sheet.

The bifurcation diagram of Fig. 3.1 shows the maximum and minimum deforma-

tions of the flexible sheet versus flow velocity. Below Ucrit = 1.43 mm/s, the flow is

stable and the structure undergoes a static deflection but does not oscillate. The Wi

at this point corresponds to,

Wicrit = λ
Ucrit
H

= 47s
1.43mm/s

5mm
= 13.4 (3.1)

Above Ucrit, a periodic response is observed. Just beyond the bifurcation point, the

maximum displacement of the flexible sheet increases linearly with flow velocity until

a velocity of U = 6mm/s, beyond which, the maximum sheet deflection reaches a

plateau and remains more or less unchanged for all flow velocities tested. On the
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Figure 3.2. Time histories of the centerline deflection of the flexible sheet at (a) U
= 4.3 mm/s, (b) U = 7.15 mm/s, and (c) U = 11.44 mm/s.

other hand, the amplitude of the sheet oscillations increases linearly until it reaches

a maximum at U = 4mm/s. Thereafter, with increasing flow velocity, the oscillation

amplitude decays.

The time histories of these oscillations at specific flow rates have been presented

in Fig. 3.2. At U = 4.3mm/s, where the structure has begun to oscillate, the flexible

sheet stretches slowly with the slope at 0.17mm/s until a failure in the elastic fluid

stresses in its wake cause the flexible sheet to recoil abruptly and the decay slope is

considerably quicker at 2mm/s. As the flow rate is increased, the oscillations of the

flexible sheet increases in frequency with its stretching rate increasing to 0.47mm/s at

U = 7.15mm/s. The rate at which the flexible sheet recoils continues to be at 2mm/s.

With increased flow rates, the oscillations of the flexible sheet continue to become

21



www.manaraa.com

Figure 3.3. The (a)amplitude and (b)frequency of the flexible sheet oscillations
plotted as a function of the flow velocity
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more repetitive and it has a faster stretching rate of 0.68 mm/s at U = 11.44mm/s.

The recoil rate of the flexible sheet stays the same. The oscillations of the flexible

sheet at this flow rate and beyond become very chaotic and seem to show higher

harmonics.

Another important observation from the time history plots of the flexible sheet

is the smoothness of the displacement curve. At the lower flow rate of 4.3mm/s,

the stretching of the flexible sheet is not uniform. There are minor peaks on the

way of reaching the maximum displacement point in the oscillation cycle. These

minor peaks may signify an instability of the flexible sheet at distant sections along

its span. With the flow rate increasing to 7.15mm/s, the stretching of the sheet

is smoother and the time history curve is a well-defined saw-tooth pattern. The

higher frequency oscillations occurring at flow rates of 10mm/s and beyond, show a

non-uniform pattern of peaks with no definite minimum and maximum displacement

point in oscillation cycles.

At low flow velocities, the sheet is able to fully recoil before any significant ex-

tensional stress can be rebuilt in the wake. This results in a smooth deflection of the

flexible sheet with a sudden and dramatic recoil of the sheet leading upto a maximum

amplitude. Subsequently, with increasing flow velocity, the deformation rate of the

flexible sheet also increases and becomes comparable to the recoil rate of the sheet.

At this point, the flexible sheet does not achieve a complete recoil since the recoil

rate is not faster than the growth of extensional stresses in the wake of the flexible

sheet anymore. As a result, the amplitude of oscillations can be observed to decay

with increasing flow velocity. Secondly, once the flow velocity gets beyond Ucrit, the

rapid recoil of the flexible sheet is found to occur due to a centralized breakdown

of extensional stress in the wake of the sheet. However, this phenomenon does not

stay the same at higher flow velocities. When the deformation rate and recoil rate

of the sheet become comparable, the breakdown of extensional stresses in the wake
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shifts from a global to a local phenomenon. As a result, local breakdowns in the

fluid extensional stress at various regions along the span of the flexible sheet begin

to dominate which effectively decrease amplitude of oscillations while increasing the

frequency as seen in Fig. 3.4.
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Figure 3.4. The bright and dark regions in the wake of the flexible sheet in the
images seen above highlight the different states of extensional fluid stresses. In (a),
at a lower flow velocity U = 7.3mm/s, the stresses developed are uniform as seen by
the uniformly dark area in the image. At a higher flow velocity shown in (b) and
(c), the extensional stresses are not uniform as seen by the irregular bright and dark
regions along the span in the wake of the flexible sheet.

25



www.manaraa.com

Figure 3.5. Schematic diagram of the setup used to obtain flow induced birefringence
images in this study

3.2 Flow-induced birefringence (FIB)

Full-field flow-induced birefringence measurements were made using the crossed

polarizer technique described in [54]. The areas of large micellar deformation are

clearly seen in Fig. 3.6 at a flow velocity of U = 4.3mm/s. The polarizers have

been oriented at 45◦ and 135◦ and the regions of extensional deformation are high-

lighted. It is known that in flows with stagnation points, that that a narrow region

of high polymer or micelle deformation known as birefringent strands can form in the

strong extensional flow just downstream of the stagnation point [55,56]. These bire-

fringent strands appear as bright areas or fringes directly in the wake of the flexible

sheet. These fringe patterns are in excellent agreement with the patterns observed in

both experiments [57] and numerical simulations [58,59].In Fig. 3.6, the birefringence

quickly goes through orders, here seen as rainbow fringe patterns, indicating a sub-

stantial amount of deformation and thus stress accumulated by the fluid as it flows

past the flexible sheet. Because of this, it is impossible as a practical matter to obtain

a quantitative value of the extinction and retardation angles from which to calculate

a value of stress. Additionally, under such large deformations, the linear stress-optic

rule no longer holds, and thus the birefringence data is used only as a qualitative tool

to guide the eye. However, it is still qualitatively an excellent tool to examine the

stress and deformation fields generated by the flow around the flexible sheet during

its time-dependent fluctuations.
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Figure 3.6. (a) Time history of the centerline deflection of the sheet for one period of
oscillation, together with bright field images of deformed sheet (left), and the exten-
sional birefringent patterns obtained by setting the crossed polarizers at 45o and 135o

(right) at U = 4.3 mm/s and for (b) t1 = 0, (c) t2 = 3.45 s, (d) t3 = 7.2 s, and (e)
t4 = 7.95 s. The dashed lines highlight the difference in the extensional birefringence
patterns and deformations of the sheet between each time interval.

27



www.manaraa.com

As seen in Fig. 3.6, a narrow region of micelle deformation, known as a birefringent

tail, forms in the strong extensional flow region just downstream of the stagnation

point. In the wake, the fluid must accelerate from rest along the trailing edge of the

sheet to the maximum flow velocity Umax over a short distance downstream of the

flexible sheet. This extensional flow results in strong micelle alignment and deforma-

tion as seen in Fig. 3.6(b). As the flow velocity is increased, a stable birefringence tail

grows both in length and intensity until the onset of the viscoelastic flow instability.

After the onset of the flow instability, the maximum extent of the birefringent tail

approaches an asymptotic limit. A series of dashed lines have been added to Fig. 3.6

to graphically illustrate the magnitude and direction of the changes to the birefrin-

gence pattern with time during one oscillation cycle. A similar line has been added

to show the deflection of the sheet in the bright-field images to the left of the FIB. At

the start of an oscillation (Fig. 3.6(b)), the wormlike micelle solution already exhibits

a significant amount of extensional stress in its wake. The birefringent tail grows in

length and intensity with time (Fig. 3.6(c)) resulting in still further stretching of the

flexible sheet. At its maximum extent (Fig. 3.6(d)), the birefringence has grown by

approximately 30% beyond its minimum extent (Fig. 3.6(b)) to nearly 10H down-

stream, while the deflection of the sheet has increased by roughly 12% from 8.5 mm

to 10 mm. When the displacement of the sheet reaches 10 mm, an abrupt breakdown

of the wormlike micelles in the high stress wake is observed resulting in a rapid loss of

extensional stress in the wake. This can be seen in Fig. 3.6(e) as a significant reduc-

tion in the length and extent of the birefringent tail. The start of the next oscillatory

cycle corresponds to the flow of new unaffected wormlike micelles from upstream of

the flexible sheet into its wake where they begin to stretch and deform the flexible

sheet again. Similar FIB patterns were observed at all flow velocities where the flow

of wormlike micelle solution was found to become unstable.
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Figure 3.7. The spanwise deformation of the flexible sheet during the oscillation
cycle

3.3 Flexible sheet deformation and extensional fluid stresses

It can observed that the flexible sheet does not only undergo a span wise defor-

mation but also a complex ‘C’ shaped curvature seen in the cross section. Thus, in

order to correlate the extensional stress developed in the fluid in the wake to the total

stress applied on the flexible sheet, it is important to take into consideration the total

deformation of the flexible sheet in-line and also cross-flow to the flow direction. To

simplify calculations, we have estimated the stress experienced by the flexible sheet

in separate cases, that is, in the in-line and cross-flow directions, even though the

resulting deformation occurs simultaneously and thus is quite a complex occurrence.

The stress required for the in-line sheet deformation can be calculated by assuming

the sheet to be a simply supported beam with a ‘C’ cross section profile and using

Euler’s beam theory to estimate the maximum force applied in the midsection at the

maximum observed displacement of the sheet. Thus, the force at the midsection of

the flexible sheet for only in-line deformation is given by,

P = ymax
48EI

L3
(3.2)

where P is the load acting on the midsection, ymax = 11mm is the maximum midsec-

tion flexible sheet displacment, E = 0.1× 106Pa is the elastic modulus of the flexible
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Figure 3.8. The assumed semi-circular cross section profile of the flexible sheet
during the oscillation cycle

sheet and I = 0.48mm4 is the second area moment of inertia of the ‘C’ shaped cross

section of the flexible sheet.Thus, the stress experienced due to an in-line force acting

on the flexible sheet can be found,

τinline =
P

L×B
= 5Pa (3.3)

where L×B is the area of the flexible sheet exposed to the incoming flow. In addition

to bending, there is a tensile stress which results from the sheet stretching from

its initial undeformed state to its deformed elongated contour length at maximum

deflection. By calculating the strain, ε, from the images of the deformed sheets, this

stress was found to be approximately σtensile = Eε = 13kPa.

The stress required to bend the flexible sheet cross section into a ‘C’ profile results

in a tensile elastic force acting on the outer layer of the sheet. This tensile stress on

the flexible sheet is estimated below,

Distance from neutral axis, c = 0.15mm

εneutral =
c

r
=

0.15mm

1.6mm
,
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τcrossflow = E εneutral = 9 kPa (3.4)

From filament stretching extensional rheology measurements, the wormlike micelle

solution was found to rupture and fail at an extensional stress of 7 kPa. Thus, these

calculations appear to confirm that the viscoelastic fluidic stresses needed to deform

the sheet are large enough to result in breakdown of viscoelastic wormlike micelles in

the wake of the sheet, resulting in a time-dependent flow field, which in turn drives

the observed time-dependent oscillations of the sheet. It is important to note that

this is a simplified explanation of the oscillation mechanism. As the cross flow and

inline deformation occur together, it can lead to changes in the sheet properties like

the area moment of inertia and the cross section of the flexible sheet does not stay a

‘C’ shape across the sheet span throughout a period of oscillation.
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CHAPTER 4

MODIFYING FLEXIBLE SHEET INCLINATION

4.1 Sheet displacement time histories

An additional set of experiments was conducted over the same range of Reynolds

numbers for cases wherein the flexible sheet was placed at 0◦, 20◦ and 45◦ to the

flow direction. The desired inclination of the flexible sheet was achieved through

external rotation of the fixtures holding the flexible sheet inside the flow cell. The

0◦ orientation did not oscillate for the range of flow rates tested and, as a result,

discussion of the 0◦ case will not be included in the subsequent text. The centerline

deflection of the flexible sheet for three different inclination angles tested is shown in

Fig. 4.1(a). For completeness and ease of comparison, the data for the 90◦ case has

been included in all subsequent figures. The side views of the complex deformation

that the flexible sheet underwent for each inclination angle are shown in inset images

in Fig. 4.1. As the flow began, the 45◦ flexible sheet was deformed into the flow

direction with its cross-section forming a ‘C’ shape that was significantly less deformed

than that of the 90◦ case. Unlike the 90◦ case, the ‘C’ shape remained open for

all the flow velocities tested and did not completely bend back onto itself. At a

critical flow velocity of U = 2.8 mm/s, the wormlike micelle solution became unstable,

and periodic oscillations of the flexible sheet started in the same manner previously

observed for the 90◦ case. The centerline deflection of the 45◦ flexible sheet increased

linearly with flow velocity up to a maximum value which was smaller than that

observed for the 90◦ case. After reaching this maximum value at U = 5.7 mm/s, the

centerline deflection decreased and approached a plateau at the higher flow velocities
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Figure 4.1. (a) Centerline displacement of the flexible sheet for 20◦( ), 45◦(N)
and 90◦(�) inclinations. The filled and hollow symbols are used for the maximum
and minimum flexible sheet displacements respectively during oscillations at each
flow velocity. The inset contains the side views of the cross-flow deformation of the
flexible sheet. (b, c) Amplitude and frequency of oscillations of the flexible sheet over
the range of flow velocities tested. The error margin for the amplitude of oscillations
is less than 10% for flow velocities below 4mm/s and less then 5% for higher flow
velocities. The error margin is less than 5% for the frequency plots.
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tested. For the 20◦ inclination, the flexible sheet began from a position aligned almost

completely with the flow and the resulting cross section profile of the sheet had a

much smaller curvature (Fig. 4.1(a)). The centerline deflection of the sheet was much

smaller than the 45◦ and 90◦ cases with a maximum deflection of 5 mm compared to

nearly 11 mm for the 90◦ case. For flow velocities larger than U = 4.8 mm/s, the 20◦

flexible sheet did not continue to hold the stretched deformation seen in Fig. 4.1(a),

but instead rotated off the centerline where it remained in an asymmetric position

closer to one of the side walls for the rest of the flow velocities tested and exhibited

no further large-amplitude fluctuations. Data for the 20◦ case beyond U = 4.8 mm/s

are therefore not presented in Fig. 4.1 or any subsequent plot. The amplitude and

frequency of oscillations from the centerline deflection time histories are mapped out

in Fig. 4.1(b) and (c) respectively. The amplitude of oscillations initially increased

roughly linearly with increasing flow velocity for all three inclinations tested and

reached a maximum. Beyond this maximum, the amplitudes of all three angles began

to decay with increasing flow velocity. The oscillation frequency increased with flow

velocity for all three inclinations.

4.2 Flexible sheet deformation and recoil rates

From the sawtooth waveform of the centerline deflection time histories, it was clear

that the flexible sheet stretches slowly before recoiling rapidly during each oscillation

cycle. In Fig. 4.2(a), the deformation and recoil velocities of the flexible sheet during

oscillations are presented as a function of flow velocity for all three inclinations. It

can be observed that the deformation velocity curve followed a similar trend for all

three inclinations over the range of flow velocities tested. The recoil velocities, on the

other hand, were very different for the three inclination angles. The 90◦ inclination

curve had the largest recoil velocity by almost a factor of three. This can likely be

attributed to the flexible sheet recoil velocity being dependent on the elastic stress
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built up within the sheet which is clearly at a maximum within the 90◦ sheet due to the

increased sheet deformation at any given flow velocity. Conversely, the deformation

velocity of the sheet is strongly dependent on the flow conditions as it is coupled

to the convection of fluid from upstream of the sheet to rebuild elastic stress in the

wake of the sheet after a fluid rupture event. As a result, as seen in Fig. 4.2(a),

the deformation velocity is not strongly coupled to the sheet orientation. A plot of

the ratio of deformation and recoil velocities of the flexible sheet over varying flow

velocities is shown in Fig. 4.2(b). For the 45◦ and 90◦ inclination angles, the ratio of

the deformation rate to recoil rate was found to start quite small at a value of less

than 0.1 and then to increase with flow velocity to reach a plateau beyond U = 8

mm/s. This plateau of the ratio of deformation and recoil velocity corresponds to the

point at which higher harmonics appear in the oscillations and the amplitude begins

to decay. For the case of the 90◦ sheet, the ratios of deformation rate to recoil rate

reached a plateau of just over 0.2. As such the dynamics of oscillation were dominated

by the fast recoil of the sheet after fluid rupture. Conversely, this rate approached

0.6 for the 45◦ sheet resulting in a more symmetric oscillation cycle and a growth in

deformation that nearly matched its decay. Although the 20◦ did not reach a plateau

before twisting from the centerline, breaking symmetry and ceasing to oscillate, its

behavior appears to be closer to that of the 45◦ sheet than the 90◦ sheet.

4.3 Non-dimensionalization of system variables

Finally, we concentrate on the results presented in the previous sections with

the objective of combining the dimensional results from the different flexible sheet

inclinations into a cohesive set of results using a single non-dimensional parameter.

In order to collapse the data for all three inclination angles, a non-dimensional flow

velocity, U∗, a non-dimensional oscillation amplitude, A∗, and a non-dimensional

frequency, f∗, were considered. The non-dimensional velocity that best collapsed the
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Figure 4.2. (a) The deformation rate (open symbols) and recoil rate (filled symbols)
during an oscillation cycle for the flexible sheet aligned at a 20◦( ), 45◦(N) and
90◦(�) inclination to the flow direction as a function of flow velocity. (b) The ratio
of deformation and recoil rates of the flexible sheet as a function of flow velocity for
the three flexible sheet inclination angles.

data both in terms of the critical onset conditions and the flow velocity corresponding

to the maximum oscillation amplitude was found to be U∗ = U/(w sin(θ)fθ). Here U

is the flow velocity, w is the width of the flexible sheet, θ is the inclination angle of the

sheet, w sin(θ) is the equivalent surface area of the flexible sheet exposed to the flow,

and fθ is the frequency of oscillations at the critical flow velocity which depends on the

inclination angle of the flexible sheet. As seen in Fig. 4.3(a), using this dimensionless

velocity, both the onset condition and the maximum of the oscillation amplitude

collapse to the values of U∗ ≈ 7 and U∗ ≈ 42, respectively. It is expected that the

appropriate dimensionless velocity should also contain some information about the

viscoelastic fluid properties, specifically, the relaxation time of the fluid, λ. However,

because in this study only a single fluid composition was used, this hypothesis could

not be fully tested. As seen in the inset in Fig. 4.3(b), a renormalization of the critical

oscillation frequency with the relaxation time to form a modified Weissenberg number,

Wif = λfθ, appears to be a promising first step towards incorporating rheological

information into our analysis as the value approaches Wif ∼ 1. Future studies will
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Figure 4.3. The dimensionless (a) amplitude and (b) frequency of oscillations as
a function of the dimensionless flow velocity for flexible sheet inclination angles of
20◦( ), 45◦(N) and 90◦(�). The inset in (b) contains the dimensionless product, λfθ,
as a function of inclination angle.

focus on how changes in fluid rheology affects the observed viscoelastic fluid-structure

interactions. The appropriate non-dimensional amplitude and frequency were found

to be A∗ = A/w sin(θ) and f∗ = f/fθ, where A and f are the dimensional amplitude

and frequency of flexible sheet oscillations, respectively. Using these dimensionless

parameters, the data from the three inclination angles are collapsed onto a master

curve as seen in Fig. 4.3(a) and (b). The slight variations in the data are likely the

result of the complex deformation of the flexible sheet under flow. The deviation of

scaling for higher flow velocities could be due to the higher harmonics that become

dominant during oscillations.
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CHAPTER 5

MODIFYING FLEXIBLE SHEET WIDTH

Another extension to this study that was investigated was the effect of modify-

ing the flexible sheet width. The width of the flexible sheet was reduced from 5mm

to 2.5mm while the experimental setup and range of flow velocities tested remained

unchanged. After mounting the modified flexible sheet, the fixtures holding the ends

of the sheet at the end walls were rotated to the required inclinations of 45◦ and 90◦.

The centerline deflection for the 45◦ and 90◦ modified flexible sheet inclinations tested

is shown in Fig. 5.1(a). As the flow started, the flexible sheet was displaced into the

flow direction as previously seen. The cross-flow deformation profile of the sheet can

be viewed in the inset. Instead of forming a complete ‘C’ profile, the sheet was able

to only bend slightly leading to an asymmetrical shape which was approximately half

of a complete ‘C’ shape that was observed for the larger 5mm width flexible sheet.

The centerline displacement of the 2.5mm width flexible sheet increased steadily with

the flow velocity and reached a plateau at 3mm/s and 5.7mm/s for the 90◦ and 45◦

flexible sheet inclinations respectively. The amplitude and frequency of oscillations

have been mapped out in Fig. 5.1(b) and (c). As observed for the 5mm width flexible

sheet inclinations, the amplitude of oscillations increased to a maximum value and

started to decay with increasing flow velocity while the frequency of oscillations in-

creased monotonically with flow velocity. The critical velocity at which the unstable

oscillations began was the same for both flexible sheet oscillations while the maxi-

mum amplitude was attained at U = 2.8 mm/s and U = 4.3 mm/s for the 90◦ and

45◦ flexible sheet oscillations respectively. As described in the previous section, the
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Figure 5.1. (a) Centerline displacement of the flexible sheet of width w= 2.5mm
for 90◦( ) and 45◦(N) inclinations. The filled and hollow symbols are used for the
maximum and minimum flexible sheet displacements respectively during oscillations
at each flow velocity. The inset contains a side view of the cross-flow deformation
of the flexible sheet. (b, c) Amplitude and frequency of oscillations of the flexible
sheet over the range of flow velocities tested. The error margin for the amplitude
of oscillations is less than 10% for flow velocities below 4mm/s and less then 5% for
higher flow velocities. The error margin is less than 5% for the frequency plots.
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Figure 5.2. The dimensionless (a) amplitude and (b) frequency of oscillations as
a function of the dimensionless flow velocity for flexible sheet inclination angles of
45◦(N) and 90◦(�). The inset in (b) contains the dimensionless product, λfθ, as a
function of inclination angle. The filled and hollow symbols represent data for the
flexible sheet width of 5mm and 2.5mm respectively.

observation of a global breakdown of wormlike micelles at low velocities transitioning

to distributed local micellar breakdowns leading to higher harmonics were verified for

the 2.5mm flexible sheet width inclinations. However, in addition, at high flow veloc-

ities, the 2.5mm flexible sheet was forced to align with the flow direction in the mid

section area. This alignment of the flexible sheet profile differs from that observed for

the 20◦ flexible sheet inclination at w =5mm as, in the latter case, the entire sheet

span was inclined at 20◦ to the flow direction and with increasing flow velocity the

entire sheet span became completely aligned with the flow and the unstable flexi-

ble sheet oscillations ceased to occur. For the 90◦ and 45◦ flexible sheet inclinations

at w =2.5mm, the unstable oscillations continued to occur, however with decaying

amplitude.

The non-dimensional amplitude and frequency of oscillations for the case of w =2.5mm

have been plotted along with those of w =5mm at 90◦ and 45◦ flexible sheet inclina-

tions in Fig. 5.2(a) and (b). It can be seen that the non-dimensional critical velocity,

U∗ = 4.2 remains applicable for this flexible sheet modification. The frequency of
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oscillations too follows a similar trend. Thus, the non-dimensional analysis for this

experimental setup has been effective at collapsing the data into a master curve.
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CHAPTER 6

CONCLUSION

In this work, the results of an investigation into the existence of non-Newtonian

fluid-structure interactions are presented. Fluid-structure interaction studies have

until now only comprised of Newtonian fluids used as test fluids. In this study, we

show that the elastic instabilities occurring during the flow of non-Newtonian fluids

can also drive the motion of structures resulting in a new and as yet unexplored field

of FSI studies. We use wormlike micelle solution as the non-Newtonian viscoelastic

fluid flowing past a flexible elastic sheet. By systematically varying the flow velocity,

flow kinematics, flexible sheet displacement and bifurcation diagram were obtained

and used to characterize viscoelastic fluid-structure interactions.

For a stable flow velocity, the extensional stresses produced by the wormlike micelle

solution in the wake of the flexible sheet produced a static deflection of the flexible

sheet. Beyond a critical flow velocity, while at an infinitesimal Re, the fluid was

found to show elastic instabilities, resulting in periodic fluctuating stresses in the

wake of the flexible sheet. These periodic elestic instabilities have been observed in

a number of studies using this test fluid [14,54,60]. However, in this study, these

elastic instabilities occur in the wake of a flexible sheet which imparts a periodic

fluctuating stress on the structure too. The flexible sheet was found to have periodic

oscillations with a saw tooth-like pattern seen in a time history plot. A bifurcation

diagram is presented to show the progression of the amplitude of the flexible sheet

oscillation about its mean center-line deflection. From the amplitude and frequency

plots, it is found that amplitude of oscillations grows linearly until a maximum, after
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which it plateaus and then decays with increasing flow velocity while the frequency

of oscillations is always increasing monotonically with increasing flow velocity. This

trend has been attributed to the varying difference between the growth rate of stresses

in the fluid which is dependent on the flow velocity and the recoil rate of the flexible

sheet which is a structural property. Along with this transition comes the change in

the dominance of local fluid elastic instabilities instead of a global central instability

with increasing flow velocity.

Flow induced birefringence images show the transition of slow growth and rapid

decay of extensional stresses in the wake of the flexible sheet in terms of the chang-

ing length and intensity of the birefringent tail observed in the wake. Additionally,

there is no vortex shedding observed during the oscillation cycles as is common in

Newtonian FSI studies. The complex deformation that the flexible sheet undergoes

during each cycle of oscillation has been highlighted in the bright field images. These

images indicate the inline and cross-flow deformation that occur simultaneously with

increasing extensional stresses produced by the fluid flowing past the sheet.

An analysis of the stresses required to produce the sheet deformation has been

conducted in order to correlate the extensional stress in the fluid with the stresses

required to produce the observed deformation of the flexible sheet. It has been shown

that the tensile stress needed for the in-line stretching of the flexible sheet and the

stress needed to bend the cross section of the flexible sheet into a complex ‘C’ shape is

many times greater than that required for the in-line bending of the sheet span. These

stresses are found to be close to the magnitude of the maximum elastic normal stresses

that can be supported by the fluid before the stretched and deformed micelles in the

solution fail(2.4.3). We are able to conclude that there is a strong relation between

the observed magnitude of flexible sheet deformation and the maximum elastic tensile

stresses reached before filament failure studied through filament stretching extensional

rheology measurements performed on this solution.
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In conclusion, we have shown, for the very first time, that purely elastic flow

instabilities occurring in a viscoelastic fluid flow can drive the motion of a flexible

structure placed in its path. The oscillations of the flexible structure, which develop

at infinitesimal Reynolds numbers and in the absence of vortex shedding, have been

presented for three inclinations and two width variations of a flexible sheet. The

measurements of the structural deformation velocity profiles and the FIB have been

used to quantify the time variation of the flow field and the state of stress in the

fluid during the oscillations. These results have been further classified using a set

of proposed non-dimensional parameters. These observations open up an entirely

new field of study. The results from this work relating to the three flexible sheet

inclinations have been published in the Journal of Fluid Mechanics [61].
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